FK037, A NEW PARENTERAL CEPHALO-SPORIN WITH A BROAD ANTIBACTERIAL SPECTRUM: SYNTHESIS AND ANTIBACTERIAL ACTIVITY

Sir:

In recent years, a number of new parenteral cephalosporins with a broad spectrum of anti-bacterial activity and a high stability against various β -lactamases have been reported¹⁾. Most of them have a 7β -[(Z)-2-(2-aminothiazol-4-yl)-2-alkoxyiminoacetamido] side chain, such as ceftizoxime (CZX) and ceftazidime (CAZ). They show excellent activity against Gram-negative bacteria and moderate activity against Gram-positive bacteria, especially Staphylococcus aureus.

Recently, 3'-quaternary ammonium cephalosporins, such as cefpirome (CPR)²⁾ and cefepime (CFPM)³⁾ which show increased activity against both Gram-positive and Gram-negative bacteria including *Pseudomonas aeruginosa* have been developed. Thus, our efforts have been focused on synthesizing novel 3'-quaternary ammonium cephalosporins with enhanced activity against Grampositive and Gram-negative bacteria including *P. aeruginosa*. As a result, we have discovered a new parenteral cephalosporin, FK037 (1), 7β -[(Z)-2-(2-)

aminothiazol-4-yl)-2-methoxyiminoacetamido]-3-[3-amino-2-(2-hydroxyethyl)pyrazolio]methyl-3-cephem-4-carboxylate sulfate. In this paper we report the synthesis and antibacterial activity of FK037⁴).

The synthesis of FK037 is outlined in Scheme 1. Diphenylmethyl 7β -tert-butoxycarbonylamino-3-chloromethyl-3-cephem-4-carboxylate (2) was treated with 5-formylamino-1-(2-formyloxyethyl)pyrazole in the presence of sodium iodide, followed by deprotection of all protecting groups with TFA and then concd hydrochloric acid to give 7β -amino-3-[3-amino-2-(2-hydroxyethyl)pyrazolio]methyl-3-cephem-4-carboxylate hydrochloride (4) in 37.5% yield from 2. 4 was acylated with 1-[(Z)-2-(2-aminothiazol-4-yl)-2-methoxyminoacetyl)]benzotriazol-3-oxide (5), followed by treatment with

Table 1. Analytical, IR and ¹H NMR data of 1.

Analysis	Calcd for C ₁₉ H ₂₂ N ₈ O ₆ S ₂ ·H ₂ SO ₄ :			
	C 36.77, H 3.90, N 18.05, S 15.50			
	Found: C 36.60, H 3.71, N 17.91, S 15.36			
IR (Nujol) cm ⁻¹	3212, 1770, 1658, 1035			
$^1\mathrm{H}$ NMR (200 MHz, DMSO- $d_6)~\delta$	3.21 and 3.33 (2H, ABq, $J = 18.1 \text{ Hz}$, 2-H ₂),			
	$3.50 \sim 3.70$ (2H, m, NC H_2 CH ₂ OH), 3.82 (3H, s			
	OCH_3), $4.00 \sim 4.20$ (1H, m, HCHOH), $4.20 \sim$			
	4.40 (1H, m, HCHOH), 5.12 and 5.30 (2H,			
	ABq, $J = 15.9 \text{Hz}$, 3'-H ₂), 5.17 (1H, d, $J = 5 \text{Hz}$,			
	6-H), 5.85 (1H, dd, $J=8$ and 5Hz, 7-H), 5.89			
	(1H, d, $J = 2.8$ Hz, pyrazole 4-H), 6.73 (1H, s,			
	thiazole 5-H), 7.22 (2H, s, thiazole NH ₂), 7.31			
	(2H, s, pyrazole NH2), 7.97 (1H, d, $J=2.8 Hz$,			
	pyrazole 5-H), 9.51 (1H, d, $J=8$ Hz, CONH)			

Table 2. Antibacterial activity of FK037.

Organism (No. of strains)	MIC (μg/ml)		1)	Organism	MIC (μg/ml)		
		50%	90%	(No. of strains)		50%	90%
Staphylococcus aureus (25) (MSSA)	FK037	0.39	3.13	Klebsiella pneumoniae	FK037	0.05	6.25
	CPR	0.39	3.13	(30)	CPR	0.05	6.25
() () -	FK037	25	25	Proteus mirabilis (20)	FK037	0.1	0.1
	CPR	100	100		CPR	0.1	0.1
1 (- /	FK037	1.56	6.25	Serratia marcescens (18)	FK037	0.78	3.13
	CPR	1.56	25		CPR ¹	0.78	1.56
Streptococcus pyogenes ^a (21)	FK037	≤0.025	≦0.025	Pseudomonas aeruginosa	FK037	3.13	6.25
	CPR	≤ 0.025	≤ 0.025	(21)	CPR	6.25	6.25
* ,	FK037	≤ 0.025	0.05	P. cepacia (11)	FK037	3.13	3.13
	CPR	≤ 0.025	0.1	1	CPR	3.13	6.25
Haemophilus influenzae ^a	FK037	0.1	0.2	P. putida (10)	FK037	0.39	3.13
(18)	CPR	0.1	0.1		CPR	0.78	3.13
Escherichia coli (30)	FK.037	0.05	0.1				
	CPR	0.05	0.1				

Müller-Hinton agar; 10⁻², stamp method; 37°C, 20 hours.

^a Supplemented with 5% horse blood.

CPR: Cefpirome.

sulfuric acid to give FK037 (1) in 46.0% yield. The structure of 1 was confirmed by elemental analysis, IR and ¹H NMR spectrum (Table 1).

Table 2 shows the antibacterial activity of FK037 along with CPR as a reference compound. FK037 displayed more potent activity than CPR against Gram-positive bacteria. In particular, antibacterial activity against methicillin-resistant *S. aureus* (MRSA) of FK037 was 4-fold superior to that of CPR (FK037, MIC₉₀: 25 μg/ml and CPR, MIC₉₀: 100 μg/ml). FK037 was the most active of all the cephalosporins tested and more active than imipenem against MRSA⁵⁾. Moreover, FK037 was more active than CPR against *P. aeruginosa*, *P. cepacia* and *P. putida*. In summary FK037 showed extremely potent broad-spectrum against both

Gram-positive including MRSA, and Gram-negative bacteria including *P. aeruginosa*.

Further evaluation of FK037 as a clinical candidate is now in progress.

HIDENORI OHKI KOHJI KAWABATA SHINYA OKUDA, TOSHIAKI KAMIMURA KAZUO SAKANE

New Drug Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., 2-1-6 Kashima, Yodogawa-ku, Osaka 532, Japan

(Received September 24, 1992)

References

- DUERCKHEIMER, W.; J. BLUMBACH, R. LATTRELL & K. H. SCHEUNEMANN: Recent developments in the field of β-lactam antibiotics. Angew. Chem. Int. Ed. Engl. 24: 180~202, 1985
- 2) LATTRELL, R.; J. BLUMBACH, W. DUERCKHEIMER, H.-W. FEHLHABER, K. FLEISCHMANN, R. KIRRSTETTER, B. MENCKE, K.-H. SCHEUNEMANN, E. SCHRINNER, W. SCHWAB, K. SEEGER, G. SEIBERT & M. WIEDUWILT: Synthesis and structure-activity relationships in the cefpirome series. I. 7-[2-(2-Aminothiazol-4-yl)-2-(Z)-oxyiminoacetamido]-3-[(substituted-1-pyridinio)methyl]ceph-3-em-4-carboxylates. J. Antibiotics 41: 1374~1394, 1988
- NAITO, T.; S. ABURAKI, H. KAMACHI, Y. NARITA, J. OKUMURA & H. KAWAGUCHI: Synthesis and struc-

- ture-activity relationships of a new series of cephalosporins, BAY-28142 and related compounds. J. Antibiotics 39: $1092 \sim 1107$, 1986
- 4) MINE, Y.; Y. WATANABE, H. SAKAMOTO, K. HATANO, T. KAMIMURA, F. MATSUMOTO & S. KUWAHARA: FK037, a novel parenteral broad-spectrum cephalosporin: I. In vitro antibacterial activity. Program and Abstracts of the 31th Intersci. Conf. on Antimicrob. Agents Chemother., No. 849, p. 240, Chicago, Sept. 29 ~ Oct. 2, 1991
- 5) Mine, Y.; Y. Watanabe, H. Sakamoto, T. Kamimura, F. Matsumoto & S. Kuwahara: FK037, a novel parenteral broad-spectrum cephalosporin: III. Excellent activity against methicillin-resistant Staphylococci. Program and Abstracts of the 31th Intersci. Conf. on Antimicrob. Agents Chemother., No. 851, p. 241, Chicago, Sept. 29 ~ Oct. 2, 1991